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A p + 1 Method of Factoring 

By H. C. Williams 

Abstract. Let N have a prime divisor p such that p + 1 has only small prime divisors. A 
method is described which will allow for the determination of p, given N. This method is 
analogous to the p - 1 method of factoring which was described in 1974 by Pollard. The 
results of testing this method on a large number of composite numbers are also presented. 

1. Introduction. In 1974 Pollard [8] introduced a method of factorization which has 
since been called the p - 1 factorization technique. Actually, the test was known to 
D. N. and D. H. Lehmer many years before this but it was never published because, 
without a fast computer, it was not possible to determine how effective it would be 
in practice. For the convenience of the reader we give a brief description of this test. 

Suppose N is a number to be factored and that N has a prime factor p such that 

(1.1) p (fII q ) +1, 

where qi is the i th prime and qi < B1. Let qf3i be that power of qi such that qf3i < B 
and qf'+ 1 > B1 and put 

k 

(1.2) R qpi= i 

Clearly, p - I R and since aP _ 1 (mod p) when (N, a) 1, we have aR 1 
(mod p). Thus,p I (N, aR - 1). 

The algorithm now proceeds as follows. For a given B1 put 

R =rr2r3 ... rm9 

(for example, m = k, ri q'i), aO = a, where (a, N) = 1 and define 

a -a,i (mod N) (i = 1, 29 3,. ... ,m) 

The values of ai can be easily calculated by a power algorithm such as those 
mentioned in Knuth [4, p. 441ff.]. We now evaluate am aR (mod N) and 
(am - 1, N). Even for fairly small values of B1 it frequently occurs that (am - 1, N) 
yields a nontrivial factor of N. 

Pollard also gives in [8] two versions of a second step which can be appended to 
the above algorithm. We give one of these here. 

Suppose instead of (1.1) we have 

p =S(f q~ + 1, 
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where s is a prime and B1 < s < B2. In this case we have p I (a' - 1, N). Let {sj: 
j = 1, 2 . . . ,k) be the ordered set of all primes such that B1 < sj s B2, and put 

2dj = sj + - sj. Since the differences between successive primes increase very slowly, 
we see that there will not be very many distinct values for the dj's. In fact, if we let 
d(x) be the largest value of dj for all primes between 1 and x, we have d(200000) = 
43, d(106) = 57, and d(4.444 X 1012) = 326; see Brent [1]. Thus, it is not too 
difficult to tabulate a2'dj for all the distinct dj. In fact, it is not really necessary to 
tabulate these values for all dj < d(x). The larger dj occur very seldom and the 
method is almost as fast if the table extends to only Klog x for some moderate value 
of K instead of d(x) which seems to be O((log x)2). This remark applies also to the 
second step of thep + 1 method. 

We calculate b_ as, (mod N) and define 

bj+ I =amdb (mod N). 

We now compute 

c 

(1.3) Gt ( HI (bt+ - 1), N for t = 1, c + 1, 2c + 1,..., [B2/c]c + 1. 
i=O 

Since bj = am (mod N), we see that p must divide some Gi. Because greatest 
common divisors are more expensive to evaluate than products, we usually have 
C > 1. 

In [3] Guy and Conway suggest that, by using Lucas functions, the first step of the 
p - 1 method can be converted into a factorization algorithm for finding a prime 
divisor p of N when p + 1 has only small prime factors. In this paper we give a 
description of how this can be done. We also present a number of new factorizations 
which have been obtained by using either the p - 1 or p + 1 method. It should be 
mentioned here that John Brillhart and Earl Ecklund have also implemented a 
version of the first step of the p + 1 method. However, in their few computer runs 
they were only able to find factors that had been previously discovered by the p - 1 
method. We also point out that a version of the method using the finite field of p2 

elements is also possible, if the reader wishes to avoid Lucas functions. Indeed, the 
author has been informed that R. P. Brent has an implementation of the p + 1 
method based on this interpretation. 

2. The Lucas Functions. In order to develop the method and formulas required in 
the next section, we give here a description of some of the basic properties of the 
Lucas functions. 

Let P, Q be integers, and let a, P3 be the zeros of x2 - Px + Q. We define the 
Lucas functions by 

(2.1) UL(P, Q) = (an - 8n)/ (a, - /), Vn(P, Q) = an + P3n. 

We also put A = (a - /3)2 = p2 - 4Q. When there is no doubt as to the values of 
the arguments P and Q, we often omit them. These functions satisfy a large number 
of identities. We will require those given below 

(2.2) Un+1 PUn - QVn-1 
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(2.3) fU2n VnUn 
1. tV2n = n - 2Qn 

(2.4) U2n-i = Un - QUn-1 

V2n-I = VnVn-I - PQnl1 

(2.5) | /AUn = PVn -2QVn-l1 (2.5) 
Vn = PUn - 2QUn-1, 

(2.6) Um+n = UmUn+1 QUm-lUn 

LAUm+n 
= VmVn+1 QVm-ln, 

(2.7) Un(Vk(p Q)q Qk) = Unk( P Q)lUk(p9 0) 

Vn( Vk( p Q ) Qk = Vnk( P Q) . 

These identities can all be verified by direct substitution from (2.1), using the simple 
facts that P = a + /3, and Q = a/. 

We also note that if (N, Q) 1 and P'Q P -2Q (mod N), then P' a/fl + 
/3/a and Q' a///- //a = 1; hence, 

(2.8) U2m(Pg Q) PQm-lUm(Pg 1) (mod N). 

Finally, we need the following 

THEOREM (SEE LEHMER [5]). If p is an odd prime, p t Q and the Legendre symbol 

(zA/p) - , then 

U(p_E)m(P, Q) 0 (mod p) 

V(p_E)m(Pq Q) 2Qm(l-F)/2 (mod p). 

3. The First Step of the Algorithm. Suppose that p is a prime divisor of N and 

(k ) 

where qi is again the ith prime and q~i ? B1. If R is defined as in (1.2), we have 
p + I I R. By the theorem of Section 2 we see that if (Q, N) = 1 and (zA/p) -1, 
then p I UR(P, Q), and therefore p I (UR(P, Q), N). 

To find UR(P, Q), Guy and Conway seem to suggest that the first formulas of 
(2.2), (2.3), and (2.4) be used together with the second formula of (2.5) to obtain 

U2 - U2n-1 = Un QUn~- 1 

U2n = Un(PUn- 2QUn-1) 

U2n+1 = PU2n -QU2n-1 

These formulas can be used in a power algorithm routine similar to that suggested 
by Lehmer [6] to find UR(P, Q). The problem with this method is that R can be very 
large (for example, when B1 = 105, R > 1043410), and it is difficult to store its value 
in the computer. Also, if B1 is increased to obtain a new R value, say R', we would 
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have to start all over again at U1(P, Q) and U2(P, Q) to find UR,(P, Q) instead of 
continuing on from UR(P, Q). These problems can be overcome by using a different 
technique. 

If p I UR(P, Q), then by (2.3) p I U2R(P, Q); thus, from (2.8) we have p I UR(P', 1). 
It follows that we lose no generality in assuming that Q= 1. Further, by the 
Theorem of Section 2, we also have 

V(p_e-M( P 1 )-_2 (mod p ); 

hence, if p I UR(P, 1), then p I (VR(P, 1) - 2). We will assume throughout the re- 
mainder of this paper that Q = 1 in our Lucas functions. 

The first step of our p + 1 algorithm is now the following: 
Let R = r1r2r3 rm as above and find PO such that (Po2 - 4, N) 1. Define 

V"(P) = V1(P, 1), Ub(P) = Ub(P, 1) and 

PJ -Vr (PJ- 1)(mod N ) ( j = 1 , 2, 3, 

By the second formula of (2.7), we see that 

(3.1) Pm-VR(PO) (mod N). 

We then calculate (Pm - 2, N). 
To find Vr = Vr(P) from P we need only use the formulas 

V2f- 1-V Vf l1 - P, 

f fVI (3.2) 4 2-V2- 2, 

l V2f+ 1--I Vf2-P (mod N), 

(see the second formulas of (2.2), (2.3), and (2.4)). 
Let 

r=I Eb12`1 (bi = O,1), 
. =o 

fo = 1, and fk+ = 2fk + bk?+; then f = r. Also, if VO(P) = 2, VI(P) P, then, to 
find the pair (VfA+', Vfk+ -I) from (Vfk' Vf, - I), we need only use the formula 

( V2f, V2fA_I) when bk?+ 0 , ? 
(3.3) (VJA+, 'A+- ) {l(V2f1+,,V2f) when bk+l 1 

together with (3.2). 

4. The Second Step of the Algorithm. Suppose 

(4.1) p (s (n[qa,) 1 

where s is a prime, and B1 < s < B2. Define s, and 2dj as in Section 1. If 

(A/zp) -1 andpI Pm - 2, thenp I (UY(Pm), N) by (2.7) and (3.1). 
Let U[n] UL4(P,1), V[n] -V,(pm) (mod N), and tabulate U[2dj - 1], U[2d,], 

U[2di + 1] for the distinct d. by using 

U[O] = 0, U[1] - 1 and U[n + 1] = PmU[n] - U[n - 1]. 
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Put 

T[si]- LUs(Pm) = \UsiR(PO)/UR(PO) (mod N), 

by the first formula of (2.7) and (3.1). From the second formula of (2.6), we have 

(4.2) | T[sI ]-PmV[Si] - 2V[s1- 11], 
1T[s1-1]=2V[s] -PmV[Si - 1] (mod N), 

and from the second formula of (2.6) we get 

[T[si+1] T[si]U[2di + 1] - T[si - 1]U[2di], 
43- T[si+l- 1] =T[si]U[2di] - T[si- I]U[2di-1] (mod N). 

Thus, to execute the second step of the algorithm we need only use (4.2) and (4.3) 
to obtain T[si], i = 1, 2, 3,.., and then evaluate 

c 

(4-4) Ht I I T [Si+t ], N 
i=O 

for t= 1, c+ 1, 2c + 1,... ,c[B2/c] + 1. We must have p I Hi for some i if p 
satisfies (4.1) and (/Vp) = -1. 

5. Implementation and Results. One of the difficulties in implementing the p + 1 
algorithm of Sections 3 and 4 is the possibility that p in (4.1) is such that 
(Po2 - 4/p) = +1 for the selected value of P0. There is no way of knowing 
beforehand that this will not occur. If we assume that the values of P0 such that 
(zA/p) = -1 are randomly distributed, the probability that (zA/p) = 1 is the same as 
the probability that (/Vp)= -1, i.e., 4. Thus the probability that (Ai/p)= 1, 
i = 1, 2, 3, ... ,n - 1, for each of n trials at a P0 value and (An,/p) = -1 for the nth 
trial is (If)n. (We assume that the P0 values selected are independent.) It follows that 
the probability that we will find some Ai such that (A i/p) = -1 after at most n trials 
at a P0 value is 

n 

(2 2 

Thus, if N has a prime factor p which satisfies (4.1), and we use the algorithm of 
Section 3 with three trials at a P0 value, we would expect to find that p I (Pm - 2, N) 
for seven of every eight such N tested. The referee has pointed out that, instead of 
making three guesses at P0, one could make many guesses to obtain A/19 2, / 3 ... as 
possible values of A for which (zA/p) = -1. One could then, by time sharing, test 
each of these A\k values a fraction Pk of the time, where, of course, 200 1 Pi = 1. Let To 
(a function of the largest prime factor of p + 1) be the time required by the 
algorithm if we were able to choose a A for which (zA/p) = -1. Then the time-shar- 
ing algorithm succeeds with probability 1 in an expected time 

00 1 

k=1 2 k1k 
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We naturally wish to select the I3k'S in such a way that T is minimized. We note that 
by Cauchy's inequality 

(k= I 2k#Xk ) lk=l ) k_=I 2k#k) 

hence, 

2k 3 (1 2 2 + 1)2. 

Thus, an optimal choice of /Pk iS Pk = 2-k/2(/ -1). Compared to taking 3 equally 
weighted trials, this method is slower when both succeed (ratio 3 + 2V2: 3) but it 
succeeds with probability 1 instead of 7/8. 

Both the p - 1 and the p + 1 methods were implemented on an AMDAHL 
470-V7 computer and run with c in (1.3) and (4.4) put equal to 14 and B, = 105, 
B2 = 2 X 105. Since the p + 1 method is much slower (two times slower for Step 1 
and about four times slower for Step 2) than the p - 1 method, we always ran the 
p - 1 method first on any given N value. 

Our programs were run on a total of 497 numbers. From an early version of a 
table of Brillhart et al. [2] (the most recent version includes the factors found here) 
we obtained 323 of these 497 numbers. These are factors of integers of the form 
bn - 1 with b = 2, 3, 5,7, 10, 11, 12. They were obtained by first dividing the main 
algebraic, including aurifeuillian, factor of bn - 1 by any of its algebraic divisors 
and then trial dividing by all primes up to 235. Those remaining composite factors 
which were between 42 and 60 digits made up the 323 numbers referred to above. 
From an as yet unpublished table of factors of Fibonacci numbers, John Brillhart 
provided the author with the remaining 174 integers. Eighty-four of these are factors 
of the Fibonacci numbers Un (n = 1,2,3,. ..,1000), where Urn+? Ur + Ur-i and 
U0 = U1 = 1, and 90 are factors of the Lucas numbers Vn (n= 1,2,3,...,500), 
where V+nI = Vn + Vrn - and V0 = 2, VI = 1. These numbers are between 41 and 
80 digits in length and were known to have no divisors less than 232 and no algebraic 
factors. 

TABLE 1 

b m b, mL b, mM 

2 4k-2 22-1 -2 +1 22A-1+2A+1 

3 6k-3 32A-1--3 + 1 32A-l + 3A + 1 

5 10k - 5 54- 2 - 53 -I + 3 * 52A-I - 5A + 1 54k-2 + 53k- I + 3 52 '-I + 5 + 1 

6 12k-6 64k-2-63A- I + 3 63--16A + 1 64A-2 + 63A-' + 3 6 3 ' + 6A + 1 

7 14k - 7 76A 3 - 75A-2 + 3 74k-2 - 73h-, 76h 3 + 75s2 + 3 7 4 +2 - 73A - I 

+ 372-- 7A +1 +3 72A-I+7A+I 

10 20k- 10 10X8-4 - 107A-3 + 5* 106A-3 1084-4 + 107A-3 + 5 . 106A-3 

-2 I05A-2 + 7- 104A-2 +2 105A-2 + 7 104A-2 

-2 *103 - I + 5- 1 s2A - +2 103A -- I + 5- 102A - I 

- 10A + I + 10A + I 

11 22k - 11 IiI I 5 - 5-I 19' -4 + 5 .I 18A -4 I 'it -5 + 4 i9A-4 + 5 . I 1x- 4 

I VA-3- 1 16P-3 + I ViA-2 + 1A -3- I PA 3- I V5A- 2 

-114-2 - I V - I + 5. - I2A- I _1A - 2 + I VA ' + 5.- 12'A I 

-11' + I +11 + I 

12 6k -3 122A - I22A-13 + 1 122A-1 + 22A-13A + I 
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The results of running the programs on these numbers are given in Tables 2, 3, 
and 4. As is done in [2] we use the notation b, m - and b, m + to denote the 
numbers bm - 1 and bm + 1. The notation b, mL and b, mM for aurifeuillians is 
more complicated. We give their values (taken from [2]) in Table 1. 

Note that b, mL and b, mM are factors of bm+ 1 for b = 2, 3,6,7, 10, 11, 12 and 
5, mL and 5, mM are factors of 5m - 1. 

In the first column of Tables 2, 3, and 4, we give the number which the composite 
integer N divides. In the second column, we give the number of decimal digits in N. 
In the third and fourth columns, we give the prime factors of N found by the 
computer program. A factor followed by an 'E' is one which was found by using 
Step 2 of the appropriate algorithm. An asterisk (*) in the first column is used to 
denote the fact that once the prime factors found in columns 3 and 4 had been 
divided into N, the remaining cofactor of N is prime; hence, we have a complete 
factorization of the number in column 1. Primality of these numbers was established 
by using the program described in Williams and Judd [9]. Two asterisks (**) in the 
first column indicate that this cofactor of N, while composite, was subsequently 
factored by M. Wunderlich using the continued fraction method of Morrison and 
Brillhart [7]. It should be noted that the factors found here for 10,65 - and 10,69 - 
were found independently by G. J. Stevens in South Australia. He also used the 
p - 1 method. 

TABLE 2 

N divides D Factor(s) found by p-i method Factor(s) found by p+1 method 

** 2, 173+ 46 47635010587 
2, 197+ 59 197002597249 

** 2, 209- 54 94803416684681 
2, 235+ 56 328006342461 

* 2, 265- 52 197748738449921 
** 2, 291+ 54 5636963037465601E 

* 2, 297+ 44 6215074747201E 
* 2, 298M 42 14641916303149E 

** 2, 309+ 44 2400744384937 
** 2, 351- 52 571890896913727 

* 2, 363- 56 75824014993 
* 2, 394L 46 152874915601 
* 2, 410L 49 61213422340181 

** 2, 418L 54 8857714771093 
* 2, 442M 49 2291059412513 
* 2, 458L 59 84948746297, 6211454306149 
* 2, 458M 50 44185520789894155033573E 

** 2, 470M 55 87255998201 
* 2, 480+ 58 137603804161 
* 2, 482M 59 76119208744309 
* 2, 558M 54 775844757937 

** 2, 602M 55 236344687097 
** 2, 610M 55 1621474400951381 
** 2, 642M 50 87251820842149E 
** 9, 654M 54 1193312900149 

* 2, 750M 48 168069194932501 
* 2, 774M 59 14512828061449 

** 2, 870L 55 4431960464101E 
** 3, 134+ 50 719571227339189 

* 3, 136+ 46 2670091735108484737 
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TABLE 2 (continued) 

N divides jDo Factor(s) found by p-i method Factor(s) found by p+l method 

* 3, 161+ 57 546857572002 1E 
* 3, 183- 47 2421854958301 
* 3, 185- 43 87841814842081 49804972211E 

* 3, 231- 54 73155606217 
* 3, 303L 48 6024412974817 

** 3, 327L 48 262434507271 
** 3, 387L 54 18456700293426547E 

* 5, 82+ 44 1148205782281 
* 5, 86+ 57 2171388367013E 
* 5, 94+ 57 329573417220613E 
* 5, 117+ 46 43236180703 

** 5, 126+ 51 4661402165281 
* 5, 141+ 49 37516308093487 

5, 180+ 58 356646293281 
* 5, 205L 53 1256950067521 
* 5, 245M 59 16650328910366149531471 

** 6, 59- 46 4866979762781 
* 6, 71+ 50 11735704315681 

** 6, 73- 57 2436094907761 
** 6, 111- 48 187333846633 
** 6, 119- 60 103198889691409 
** 6, 132+ 49 332526664667473E 
** 6, 141- 57 122320721569 

* 6, 162M 43 39661919912737E 
** 6, 222M 52 63717427974558037 
** 6, 270L 49 51353541541 
** 6, 270M 53 159594687181 

7, 115- 60 723461377501 
** 7, 117+ 52 5075833207537 

* 7, 132+ 59 98138029441 
** 7, 133L 47 265043186297E 

* 7, 175L 48 8230203760252601 
** 7, 231L 48 207734163253 

*10, 65- 48 162503518711 
*10, 69- 42 203864078068831E 
*10, 80+ 51 947147262401 

**10, 87+ 57 638453709757E 
*10, 95+ 60 121450506296081 
*10, 102+ 44 225974065503889 
*11, 59- 58 70845409351 

**11, 59+ 57 53199025841281128499153 
**11, 67+ 52 2778466094669 

*11, 84+ 42 70107576001 
**11, 231M 55 130958161489 

*12, 61+ 50 5188602220069 
*12, 81- 52 660198074531409E 

**12, 85- 55 204560684821 
**12, 87- 55 74233562929 

12, 183M 60 563215815517E 
*12, 231L 52 161409762520777 

Factors were found for slightly over one quarter (134) of the 497 numbers tested. 
Most of these factors were found by the p - 1 method (1 12 vs. 32). This is what we 
would expect since (i) the p - 1 method was used first and (ii) for the numbers in 
Table 2 there is a built-in bias toward the success of the p - 1 test. This is because 
any prime divisor of bm - 1 which does not divide any algebraic factor of bt -I 

must be of the form km + 1. 
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TABLE 3 

N D Factor(s) found by p-1 method Factor(s) found by p+1 method 

*U 247 46 409100738617 

*U307 55 5307027867738937 

*U 313 59 7901346123803597 

*U 323 52 85542646443577 

*U 343 57 5449038756620509 

U361 72 6567762529, 1196762644057 

*U 365 48 758275080626801 

U367 59 5648966761 43397676601 

U377 71 361575655741 

*U 387 45 14279673833 

*U403 65 42136290591640129 

U411 51 972663078773E 

*U 421 75 45688564527041 

U455 55 36768087721 

U459 57 2043118036369 

*U465 42 6936488411701, 59666387254501 

*U483 56 1795220677069 

U485 74 16892304192301, 511715857773521 

*U495 51 1250839826281 

U507 63 10069148777 

*U531 63 2192843129417 

*U549 67 5883010433, 80256319951861 10424083697 

U555 53 49649320649221 

U567 68 49114912141, 3936504300121 

U591 79 22221540969737 

U595 73 8310112721, 9022425301 

U633 73 41773163881 

*U675 70 6641555895901 

U765 77 72208475461 

The real problem with the p + 1 test is the fact that it is quite slow. For our 
program we found that it was about nine times slower (when used three times for 
three different trials at PO value) than the p - 1 test. Thus, one should probably use 
a higher bound for B1 or B2 for the p - 1 test than for the p + 1 test. We remark 
here, however, that if we had increased the max(B , B2) to IO', the p - 1 test would 
very likely have found nine of the 32 factors found here by the p + 1 test. This is 
because each of the remaining numbers p is such that a prime which exceeds 107 

divides p - 1. 
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TABLE 4 

N D Factor(s) found by p-I method Factor(s) found by p+l method 

*V 254 50 347366417511089201 

*V 271 46 92206663291 

*V 283 56 252605941501 

V299 46 143236388738249 

V302 63 70963651961 

V304 45 12441241017224321 

V331 64 54184296181 

V338 57 404112157123 

*V 346 72 68520477202692467E 

*V 352 67 3891324187650256896001 

V358 75 316590102769 

V367 71 19997474011 

*V 369 48 26024651929 18736753266019E 

V374 59 3827019260681 

*V 384 42 1769526527 

*V 390 41 54975368761 

V406 67 64690797641 

*V 413 67 33637840386809 

*V 418 59 722601451307 

V419 79 316722762859 

V426 55 1006118006507 

*V 428 74 386610981607 

*V460 69 28677143808961 460 

*V469 70 10812055185331 

*V477 66 49721203549E 6430515046741 1 
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